Home
Class 12
MATHS
inte^(x)(1+tanx+tan^(2)x)dx=...

`inte^(x)(1+tanx+tan^(2)x)dx=`

A

`e^(x).sec^(2)x+c`

B

`e^(x).secx+c`

C

`e^(x).tan^(2)x+c`

D

`e^(x).tanx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x (1 + \tan x + \tan^2 x) \, dx \), we can break it down into manageable parts. ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start by rewriting the integral: \[ \int e^x (1 + \tan x + \tan^2 x) \, dx = \int e^x \, dx + \int e^x \tan x \, dx + \int e^x \tan^2 x \, dx \] 2. **Integrate the First Term**: The first term is straightforward: \[ \int e^x \, dx = e^x + C_1 \] 3. **Integrate the Second Term**: For the second term \( \int e^x \tan x \, dx \), we can use integration by parts. Let: - \( u = \tan x \) ⇒ \( du = \sec^2 x \, dx \) - \( dv = e^x \, dx \) ⇒ \( v = e^x \) Applying integration by parts: \[ \int e^x \tan x \, dx = e^x \tan x - \int e^x \sec^2 x \, dx \] 4. **Integrate the Third Term**: For the third term \( \int e^x \tan^2 x \, dx \), we can express \( \tan^2 x \) in terms of \( \sec^2 x \): \[ \tan^2 x = \sec^2 x - 1 \] Thus, \[ \int e^x \tan^2 x \, dx = \int e^x (\sec^2 x - 1) \, dx = \int e^x \sec^2 x \, dx - \int e^x \, dx \] 5. **Combine the Results**: Now we combine all the parts: \[ \int e^x (1 + \tan x + \tan^2 x) \, dx = e^x + \left( e^x \tan x - \int e^x \sec^2 x \, dx \right) + \left( \int e^x \sec^2 x \, dx - e^x \right) \] Notice that the \( -e^x \) from the third term cancels with the \( +e^x \) from the first term: \[ = e^x \tan x + C \] ### Final Answer: Thus, the final result of the integral is: \[ \int e^x (1 + \tan x + \tan^2 x) \, dx = e^x \tan x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//4)e^(x)(1+tanx+tan^(2)x)dx

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

int(1)/(1+tan ^(2)x)dx

int(2tanx)/(2+3tan^(2)x)dx=

inte^(x)tanx(1+tanx)dx=

int(2tan x)/(1+tan^(2)x)dx

int((1-tanx)/(1+tanx))^(2)dx=

int((1+tan)/(1-tanx))^(2)dx=

e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)

int(secx tanx)/(9-16 tan^2x)dx=