Home
Class 12
MATHS
int{(1)/((logx))-(1)/((logx)^(2))}dx=?...

`int{(1)/((logx))-(1)/((logx)^(2))}dx=?`

A

`e^(x).logx+c`

B

`x.logx+c`

C

`(logx)/(x)+c`

D

`(x)/(logx)+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

int(logx)^(2)dx=?

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int(1)/(x(logx))dx=?

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

int1/(x(1-logx)^(2))dx=