Home
Class 12
MATHS
If int(x)/(1+sinx)dx=logu-x(secx-tanx)+c...

If `int(x)/(1+sinx)dx=logu-x(secx-tanx)+c,` then `u=`

A

`(1)/(1+sinx)`

B

`(1)/(1-sinx)`

C

`1-sinx`

D

`1+sinx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(tanx)/((1-sinx))dx

int(1)/(secx+tanx)dx=

int(secx)/(sinx+cosx)dx=

intsinxlog(secx+tanx)dx=

intsecxlog(secx+tanx)dx

int(tanx)/(secx+tanx)dx=

inte^(x)tanx(1+tanx)dx=

int(1)/(a secx+b tanx)dx=

int sec x log(secx+tanx)dx=

int(secx)/(log(secx+tanx))dx=