Home
Class 12
MATHS
If intx^(3).e^(-x)dx=-e^(-x).f(x)+c, the...

If `intx^(3).e^(-x)dx=-e^(-x).f(x)+c,` then `f(x)=`

A

`x^(3)-3x^(2)+6x-6`

B

`-x^(3)+3x^(2)-6x+6`

C

`x^(3)-3x^(2)+6x+6`

D

`x^(3)+3x^(2)+6x+6`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

intx^(4)e^(2x)dx=

intx^(5).e^(x^(2))dx=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

intx^3e^(x^2)dx

If intx^(2).e^(x^(3))dx=u.e^(x^(3))+c, then u=

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If int(e^(x)-1)/(e^(x)+1)dx=f(x)+C, then f(x) is equal to

If int(x^(2)-x+1)/((x^(2)+1)^((3)/(2)))e^(x)dx=e^(x)f(x)+c, then f(x) is an even function f(x) is a bounded function the range of f(x) is (0,1)f(x) has two points of extrema

If intx.f(x)dx=(1)/(2)f(x)+c , then f(x)=