Home
Class 12
MATHS
if intxtan^-1x dx=utan^-1x-x/2+c then u=...

if `intxtan^-1x dx=utan^-1x-x/2+c` then `u=`

A

`x^(2)-(1)/(2)`

B

`(x^(2))/(2)+(1)/(2)`

C

`1-x^(2)`

D

`x^(2)+1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

if int x tan^(-1)xdx=u tan^(-1)x-(x)/(2)+c then u=

If intsin^(-1)xdx=x sin^(-1)x+u+c, then u=

if int tan^(-1)sqrt(x)dx=u tan^(-1)sqrt(x)-sqrt(x)+c then u=

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of A ?

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of B ?

If (d)/(dx)[cot^(-1)(x+1)]+(d)/(dx)(tan^(-1)x)=(d)/(dx)(tan^(-1)u)," then "u=

If u=tan^(-1){(sqrt(1+x^2)-1)/x} and v=2tan^(-1)x , then (d u)/(d v) is equal to......

Prove that int e^x (tan^-1 x+1/(1+x^2)) dx=e^x tan^-1x+c