Home
Class 12
MATHS
int(1+tan^(2)x)/(1+tanx)dx=...

`int(1+tan^(2)x)/(1+tanx)dx=`

A

`sinx+cosx+c`

B

`cosx-sinx+c`

C

`log(1+tanx)+c`

D

`log(cosx+sinx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \tan^2 x}{1 + \tan x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We know that \( 1 + \tan^2 x = \sec^2 x \). Therefore, we can rewrite the integral as: \[ \int \frac{\sec^2 x}{1 + \tan x} \, dx \] ### Step 2: Use substitution Let \( t = 1 + \tan x \). Then, we need to find \( dt \): \[ dt = \sec^2 x \, dx \] This means that \( dx = \frac{dt}{\sec^2 x} \). ### Step 3: Substitute in the integral Substituting \( t \) and \( dt \) into the integral gives us: \[ \int \frac{\sec^2 x}{t} \cdot \frac{dt}{\sec^2 x} = \int \frac{1}{t} \, dt \] ### Step 4: Integrate The integral of \( \frac{1}{t} \) is: \[ \ln |t| + C \] ### Step 5: Substitute back Now we substitute back \( t = 1 + \tan x \): \[ \ln |1 + \tan x| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1 + \tan^2 x}{1 + \tan x} \, dx = \ln |1 + \tan x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1+tan^2x)/(1-tan^2x)dx=

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

int(sec^(2)x)/((1+tanx))dx

int ((1+tanx)/(1-tanx))dx

int((1+tanx)/(1-tanx))dx

int(1-tanx)/(1+tanx)dx=

int(sec^(2)x+1)/(x+tanx)dx

int(2tan x)/(1+tan^(2)x)dx

int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)dx equals to