Home
Class 12
MATHS
int(ae^(x)+be^(-x))/((ae^(x)-be^(-x)))dx...

`int(ae^(x)+be^(-x))/((ae^(x)-be^(-x)))dx=`

A

`(1)/(be^(-x)-ae^(x))+c`

B

`(-1)/(ae^(x)+be^(-x))+c`

C

`log(ae^(x)-be^(-x))+c`

D

`log(ae^(x)+be^(-x))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

(1)/(ae^(x)+be^(-x))

int ae^(x)dx

(1) y = ae^(4x) -be^(-3x) +c (2) xy = ae^(5x) +be^(-5x)

if quad lim_(x rarr0)(sin x+ae^(x)+be^(-x)+e log(1+x))/(x^(3))=oo then the value of L

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If f (x) = [{:((ae^(sin x )+be ^(-sinx)-c)/(x ^(2)),,, x ne0),(2, ,, x =0):} is continous at x=0, then:

If (sin x+ae^(x)+be^(-x)+sin(1+x))/(x^(3)) has a finite limit L as xx^(3)rarr0, then

"If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

The order of the differential equation whose solution is ae^(x) + be^(2x) + ce^(3x) + d = 0 is