Home
Class 12
MATHS
int(2^(x)3^(x))/(1+(36)^(x))dx=...

`int(2^(x)3^(x))/(1+(36)^(x))dx=`

A

`(tan^(-1)(6^(x)))/(log6)+c`

B

`(1)/(12)log((1+6^(x))/(1-6^(x)))+c`

C

`(1)/(12)log((6^(x)-1)/(6^(x)+1))+c`

D

`(1)/(12)tan^(-1)((6^(x))/(log6))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{2^x 3^x}{1 + 36^x} \, dx, \] we can follow these steps: ### Step 1: Simplify the integrand We start by rewriting the expression in the integrand. Notice that: \[ 2^x 3^x = (2 \cdot 3)^x = 6^x, \] and \[ 36^x = (6^2)^x = 6^{2x}. \] Thus, we can rewrite the integral as: \[ I = \int \frac{6^x}{1 + 6^{2x}} \, dx. \] ### Step 2: Use substitution Next, we will use the substitution \( t = 6^x \). Then, we need to find \( dx \) in terms of \( dt \). Differentiating \( t = 6^x \) gives: \[ dt = 6^x \ln(6) \, dx \quad \Rightarrow \quad dx = \frac{dt}{6^x \ln(6)} = \frac{dt}{t \ln(6)}. \] ### Step 3: Substitute in the integral Now we substitute \( t \) and \( dx \) into the integral: \[ I = \int \frac{t}{1 + t^2} \cdot \frac{dt}{t \ln(6)} = \frac{1}{\ln(6)} \int \frac{1}{1 + t^2} \, dt. \] ### Step 4: Integrate The integral \[ \int \frac{1}{1 + t^2} \, dt \] is a standard integral that evaluates to \[ \tan^{-1}(t) + C. \] Thus, we have: \[ I = \frac{1}{\ln(6)} \left( \tan^{-1}(t) + C \right). \] ### Step 5: Substitute back for \( t \) Now we substitute back \( t = 6^x \): \[ I = \frac{1}{\ln(6)} \left( \tan^{-1}(6^x) + C \right). \] ### Final Result Therefore, the final result of the integral is: \[ I = \frac{1}{\ln(6)} \tan^{-1}(6^x) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(2x^(3))/((x+1)(x-3)^(2))dx

int((x^(2)+1))/((x+3)(x-3))dx

int(x^(2))/((x-1)(x-2)(x-3))dx

int(x^(3)+2)/((x-1)(x-2)^(3))dx=

int(x^(2)+3x-1)/((x+1)^(2))dx

int(x^(4)+3x^(2)+1)/(x^(3))dx

Evaluate: int(x^(2))/((x-1)^(3)(x+1))dx

Evaluate: int(x^(2))/((x-1)^(3)(x+1))dx

int(x^(3)+2)/((x-1)(x-2)^(2))dx

int(x^(2))/((1+x^(3))(2+x^(3)))dx