Home
Class 12
MATHS
int(sqrt(1+sqrtx))/(sqrtx)dx=...

`int(sqrt(1+sqrtx))/(sqrtx)dx=`

A

`sqrt(logx+2sqrtx)+c`

B

`(4)/(3)(1+sqrtx)^(3//2)+c`

C

`(1)/(sqrt(logx+2sqrtx))+c`

D

`(4)/(3(1+sqrtx)^(3//2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{1 + \sqrt{x}}}{\sqrt{x}} \, dx \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we get: \[ \int \frac{\sqrt{1 + t}}{t} \cdot 2t \, dt = 2 \int \sqrt{1 + t} \, dt \] ### Step 3: Integrate Now we need to integrate \( \sqrt{1 + t} \): \[ \int \sqrt{1 + t} \, dt \] Using the power rule for integration, we can rewrite \( \sqrt{1 + t} \) as \( (1 + t)^{1/2} \): \[ \int (1 + t)^{1/2} \, dt = \frac{(1 + t)^{3/2}}{\frac{3}{2}} + C = \frac{2}{3} (1 + t)^{3/2} + C \] ### Step 4: Substitute Back Now we substitute back \( t = \sqrt{x} \): \[ 2 \left( \frac{2}{3} (1 + t)^{3/2} + C \right) = \frac{4}{3} (1 + \sqrt{x})^{3/2} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sqrt{1 + \sqrt{x}}}{\sqrt{x}} \, dx = \frac{4}{3} (1 + \sqrt{x})^{3/2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(sec sqrtx)/(sqrtx)dx=

int(1-cossqrtx)/(sqrtx)dx=

int(sqrtx)/(1+xsqrtx)dx-

int (cossqrtx)/(sqrtx)dx

int1/(sqrtx(1-sqrtx)dx=

int ((1+sqrtx)^2)/sqrtx dx=

int(1)/(sqrt(1+sqrtx))dx=

Let I =int _(0)^(1 ) sqrt((1-sqrtx)/(1+sqrtx)) dx then correct statement (s) is/are:

int(sqrtx+1/sqrtx)^2 dx=