Home
Class 12
MATHS
int(1)/(x)log((1)/(x))dx=...

`int(1)/(x)log((1)/(x))dx=`

A

`log(logx)+c`

B

`-(1)/(2)(logx)^(2)+c`

C

`2logx+c`

D

`-logx+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)(log x)/(x)dx=

int_(-1)^(1)log((1+x)/(1-x))dx=

The function F(x)=int_(0)^(x)log((1-x)/(1+x))dx is

"int log((1)/(x))dx

int(1)/(x)(1+log x)dx

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

int_(0)^(1)(log(1-x))/(x)dx

If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+dx+C, then

The function F(x)=int_(0)^(x) log((1-x)/(1+x))dx , is

If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+Ax+C then (a)f(x)=(1)/(2)x^(2)(b)g(x)=log x(c)A=1(d) none of these