Home
Class 12
MATHS
int(sqrt(tanx))/(sin2x)dx=...

`int(sqrt(tanx))/(sin2x)dx=`

A

`2sqrt(sin2x)+c`

B

`sqrt(tanx)+c`

C

`sqrt(sinx+cosx)+c`

D

`sqrt(cotx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{\tan x}}{\sin 2x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We know that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite the integral as: \[ \int \frac{\sqrt{\tan x}}{2 \sin x \cos x} \, dx \] ### Step 2: Express \( \tan x \) in terms of \( \sin x \) and \( \cos x \) Recall that \( \tan x = \frac{\sin x}{\cos x} \). Thus, we can express \( \sqrt{\tan x} \) as: \[ \sqrt{\tan x} = \sqrt{\frac{\sin x}{\cos x}} = \frac{\sqrt{\sin x}}{\sqrt{\cos x}} \] ### Step 3: Substitute into the integral Substituting this into our integral gives: \[ \int \frac{\frac{\sqrt{\sin x}}{\sqrt{\cos x}}}{2 \sin x \cos x} \, dx = \int \frac{\sqrt{\sin x}}{2 \sin x \cos x \sqrt{\cos x}} \, dx \] This simplifies to: \[ \int \frac{1}{2 \sqrt{\cos x} \sin x} \, dx \] ### Step 4: Use substitution Let \( t = \tan x \). Then, \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} \). Also, we know that \( \sin x = \frac{t}{\sqrt{1+t^2}} \) and \( \cos x = \frac{1}{\sqrt{1+t^2}} \). ### Step 5: Substitute \( \sin x \) and \( \cos x \) Substituting these into the integral: \[ \int \frac{1}{2 \sqrt{\frac{1}{1+t^2}} \cdot \frac{t}{\sqrt{1+t^2}}} \cdot \frac{dt}{\sec^2 x} \] This becomes: \[ \int \frac{\sqrt{1+t^2}}{2t} \cdot \frac{dt}{1+t^2} = \int \frac{1}{2t} \, dt \] ### Step 6: Integrate Now, we can integrate: \[ \int \frac{1}{2t} \, dt = \frac{1}{2} \ln |t| + C \] ### Step 7: Substitute back for \( t \) Recall that \( t = \tan x \): \[ \frac{1}{2} \ln |\tan x| + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{\sqrt{\tan x}}{\sin 2x} \, dx = \frac{1}{2} \ln |\tan x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(cotx))/(sin2x)dx-

int(sqrt(tanx))/(sinxcosx)dx is equal to.

Evaluate int(sqrt(tanx))/(sinx cosx)dx

Evaluate: int(sqrt(cotx)-sqrt(tanx))/(1+3sin2x)dx

int ((sqrt(tanx))/(sinx cosx))dx

Evaluate int(sqrt(tanx))/(sinx. cos x) dx

int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)dx equals to

int(sqrt(tanx)+sqrt(cotx))dx is equal to

Evaluate int(sqrt(tanx)+sqrt(cotx))dx

int2^(tanx)/(cos^2x)dx