Home
Class 12
MATHS
int(cos2x)/(cosx-sinx)dx=...

`int(cos2x)/(cosx-sinx)dx=`

A

`sinx+cosx+c`

B

`cosx-sinx+c`

C

`sinx-cosx+c`

D

`sinx.cosx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos 2x}{\cos x - \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite \( \cos 2x \) We use the double angle identity for cosine: \[ \cos 2x = \cos^2 x - \sin^2 x \] Thus, we can rewrite the integral as: \[ \int \frac{\cos^2 x - \sin^2 x}{\cos x - \sin x} \, dx \] ### Step 2: Factor the numerator Notice that \( \cos^2 x - \sin^2 x \) can be factored using the difference of squares: \[ \cos^2 x - \sin^2 x = (\cos x + \sin x)(\cos x - \sin x) \] Now substituting this back into the integral gives: \[ \int \frac{(\cos x + \sin x)(\cos x - \sin x)}{\cos x - \sin x} \, dx \] ### Step 3: Simplify the integral The \( \cos x - \sin x \) terms in the numerator and denominator cancel out (assuming \( \cos x - \sin x \neq 0 \)): \[ \int (\cos x + \sin x) \, dx \] ### Step 4: Integrate Now we can integrate \( \cos x + \sin x \): \[ \int (\cos x + \sin x) \, dx = \int \cos x \, dx + \int \sin x \, dx \] The integrals are: \[ \int \cos x \, dx = \sin x \] \[ \int \sin x \, dx = -\cos x \] So, combining these results, we get: \[ \sin x - \cos x + C \] where \( C \) is the constant of integration. ### Final Answer: Thus, the final result of the integral is: \[ \int \frac{\cos 2x}{\cos x - \sin x} \, dx = \sin x - \cos x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

int(cos2x)/(sinx+cosx)dx=

int((1+cosx))/(x+sinx)dx

int(sinx)/(sin(x-a))dx-int(cosx)/(cos(x-a))dx=

inte^(-x)(cosx-sinx)dx=

int (cos2x)/(cosx) dx=

int(cosx)/(sinx+cosx)dx=

int(sin x-cos x)/((cosx+sinx))dx=

Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx