Home
Class 12
MATHS
int(cosx)/(sqrt(cos2x))dx=...

`int(cosx)/(sqrt(cos2x))dx=`

A

`(-1)/(sqrt2)log[sqrt2sinx+sqrt(cos2x)]+c`

B

`(-1)/(sqrt2)sin^(-1)(sqrt2 cos x)+c`

C

`(1)/(sqrt2)sin^(-1)(sqrt2 sinx)+c`

D

`(1)/(sqrt2)sin^(-1)(sqrt2sinx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos x}{\sqrt{\cos 2x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We know that \( \cos 2x = 1 - 2\sin^2 x \). Therefore, we can rewrite the integral as: \[ \int \frac{\cos x}{\sqrt{1 - 2\sin^2 x}} \, dx \] ### Step 2: Use Substitution Let \( t = \sin x \). Then, we have: \[ dt = \cos x \, dx \quad \text{or} \quad dx = \frac{dt}{\cos x} \] Substituting this into the integral gives: \[ \int \frac{\cos x}{\sqrt{1 - 2t^2}} \cdot \frac{dt}{\cos x} = \int \frac{1}{\sqrt{1 - 2t^2}} \, dt \] ### Step 3: Factor Out Constants We can factor out constants from the square root: \[ \int \frac{1}{\sqrt{1 - 2t^2}} \, dt = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\frac{1}{2} - t^2}} \, dt \] ### Step 4: Recognize the Integral Form The integral \( \int \frac{1}{\sqrt{a^2 - x^2}} \, dx \) has a known result: \[ \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \left( \frac{x}{a} \right) + C \] In our case, \( a^2 = \frac{1}{2} \) so \( a = \frac{1}{\sqrt{2}} \). ### Step 5: Apply the Formula Using the formula, we have: \[ \int \frac{1}{\sqrt{\frac{1}{2} - t^2}} \, dt = \sin^{-1} \left( \frac{t}{\frac{1}{\sqrt{2}}} \right) + C = \sin^{-1}(\sqrt{2} t) + C \] ### Step 6: Substitute Back Now substitute back \( t = \sin x \): \[ \sin^{-1}(\sqrt{2} \sin x) + C \] ### Step 7: Multiply by the Constant Don’t forget the factor we took out earlier: \[ \frac{1}{\sqrt{2}} \left( \sin^{-1}(\sqrt{2} \sin x) + C \right) \] Thus, the final result is: \[ \frac{1}{\sqrt{2}} \sin^{-1}(\sqrt{2} \sin x) + C \] ### Final Answer The final answer to the integral is: \[ \frac{1}{\sqrt{2}} \sin^{-1}(\sqrt{2} \sin x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(secx)/(sqrt(cos2x))dx=

int(sinx)/(sqrt(cos2x))dx=

int(dx)/(sqrt(1+cos2x))

int(1)/(cosx sqrt(cos2x))dx=

int(cosx)/(sqrt(17-cos^(2)x))dx=

int((sinx+cosx))/(sqrt(sin2x))dx

Evaluate: int(1)/(sqrt(1+cos2x))dx

int(cos2x)/(sinx+cosx)dx=

int(d(cosx))/(sqrt(1-cos^(2)x))=

int(x.cosx)/(sqrt(x.sinx+cosx))dx=