Home
Class 12
MATHS
int(1)/(secx+tanx)dx=...

`int(1)/(secx+tanx)dx=`

A

`(1)/(sec)+c`

B

`secx+log(secx+tanx)+c`

C

`cosx+log(cosx-cotx)+c`

D

`log(secx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sec x + \tan x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \sec x \) and \( \tan x \) in terms of sine and cosine: \[ \sec x = \frac{1}{\cos x}, \quad \tan x = \frac{\sin x}{\cos x} \] Thus, we can express the integrand as: \[ \sec x + \tan x = \frac{1}{\cos x} + \frac{\sin x}{\cos x} = \frac{1 + \sin x}{\cos x} \] This allows us to rewrite the integral: \[ \int \frac{1}{\sec x + \tan x} \, dx = \int \frac{\cos x}{1 + \sin x} \, dx \] ### Step 2: Use substitution Next, we will use substitution to simplify the integral. Let: \[ t = 1 + \sin x \] Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = \cos x \quad \Rightarrow \quad dt = \cos x \, dx \] Now, we can substitute \( t \) and \( dt \) into the integral: \[ \int \frac{\cos x}{1 + \sin x} \, dx = \int \frac{1}{t} \, dt \] ### Step 3: Integrate The integral of \( \frac{1}{t} \) is: \[ \int \frac{1}{t} \, dt = \ln |t| + C \] Substituting back for \( t \): \[ \ln |1 + \sin x| + C \] ### Final Answer Thus, the final answer to the integral is: \[ \int \frac{1}{\sec x + \tan x} \, dx = \ln |1 + \sin x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1)/(a secx+b tanx)dx=

int(tanx)/(secx+tanx)dx=

Evaluate int(tanx)/(secx+tanx)dx

int 1/secx dx

int(secx+tanx)^(2)dx=

inttan^(-1)(secx+tanx)dx=?

intsecx/(secx+tanx)dx

int(1)/(cosx+secx)dx=

int(1)/(tanx+cotx)dx=

inte^(x)secx(1+tanx)dx=?