Home
Class 12
MATHS
int(1)/(tanx+cotx)dx=...

`int(1)/(tanx+cotx)dx=`

A

`log(secx+cosx)+c`

B

`2cos 2x+c`

C

`-(1)/(2)cos 2x+c`

D

`(1)/(2)sin^(2)x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\tan x + \cot x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \tan x \) and \( \cot x \) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we have: \[ \tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \] ### Step 2: Find a common denominator To combine the fractions, we find a common denominator: \[ \tan x + \cot x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} \] Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \), we can simplify this to: \[ \tan x + \cot x = \frac{1}{\sin x \cos x} \] ### Step 3: Substitute into the integral Now we substitute this back into the integral: \[ \int \frac{1}{\tan x + \cot x} \, dx = \int \sin x \cos x \, dx \] ### Step 4: Use a trigonometric identity We can use the double angle identity for sine: \[ \sin x \cos x = \frac{1}{2} \sin 2x \] Thus, the integral becomes: \[ \int \sin x \cos x \, dx = \int \frac{1}{2} \sin 2x \, dx \] ### Step 5: Integrate Now we can integrate: \[ \int \frac{1}{2} \sin 2x \, dx = \frac{1}{2} \cdot \left(-\frac{1}{2} \cos 2x\right) + C = -\frac{1}{4} \cos 2x + C \] ### Final answer Therefore, the solution to the integral is: \[ \int \frac{1}{\tan x + \cot x} \, dx = -\frac{1}{4} \cos 2x + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(tanx+cotx)^2dx

int 1/(1+tanx) dx

Knowledge Check

  • int(tanx-cotx)^(2)dx=

    A
    `tanx+cotx+c`
    B
    `tanx-cotx+c`
    C
    `-tanx-cotx+c`
    D
    `-tanx+cotx+c`
  • int(1)/(secx+tanx)dx=

    A
    `(1)/(sec)+c`
    B
    `secx+log(secx+tanx)+c`
    C
    `cosx+log(cosx-cotx)+c`
    D
    `log(secx)+c`
  • int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

    A
    `(1)/(2)(sinx+cosx+x)+C`
    B
    `(1)/(2)(sinx-cosx-x)+C`
    C
    `(1)/(2)(cosx-xsinx)+C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    int 1/(1+tanx) dx

    int(tanx)/(1+cosx)dx=

    int(dx)/(tanx+cotx+secx+cos e c x)=

    int((secx+ "cosec x")(secx- "cosec x"))/(tanx +cotx)dx=

    int(1+cotx)/(1-cotx)dx=