Home
Class 12
MATHS
int(secxcosecx)/(log(tanx))dx=...

`int(secxcosecx)/(log(tanx))dx=`

A

`(1)/(2)[log(tanx)]^(2)+c`

B

`log[log(tanx)]+c`

C

`(-1)/(log(tanx))+c`

D

`log[tan(logx)]+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(secx" cosec "x)/(log(tanx))dx

int secx cosec x log(tanx)dx=

int(secxcosecx)/(tan^(2)x)dx=

int(secx)/(log(secx+tanx))dx=

int(sinx+cosecx)/(tanx)dx=

(i) int (tanx)/((secx + tanx))dx ,(ii) int(cosecx)/((cosecx- cotx))dx

inte^(x)[secx+log(secx+tanx)]dx=?

int sec x log(secx+tanx)dx=

Evaluate int secx/log(secx+tanx)dx