Home
Class 12
MATHS
int(tan^(2)x-cot^(2)x)dx=...

`int(tan^(2)x-cot^(2)x)dx=`

A

`tanx+cotx+c`

B

`tanx-cotx+c`

C

`-tanx-cotx+4x+c`

D

`cot2x+cotx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\tan^2 x - \cot^2 x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression \( \tan^2 x - \cot^2 x \). We can use the identities for tangent and cotangent: \[ \tan^2 x = \sec^2 x - 1 \quad \text{and} \quad \cot^2 x = \csc^2 x - 1 \] Substituting these identities into the integral, we have: \[ \tan^2 x - \cot^2 x = (\sec^2 x - 1) - (\csc^2 x - 1) \] This simplifies to: \[ \tan^2 x - \cot^2 x = \sec^2 x - \csc^2 x \] ### Step 2: Set up the integral Now we can rewrite the integral: \[ \int (\tan^2 x - \cot^2 x) \, dx = \int (\sec^2 x - \csc^2 x) \, dx \] ### Step 3: Separate the integrals We can separate the integral into two parts: \[ \int \sec^2 x \, dx - \int \csc^2 x \, dx \] ### Step 4: Integrate each part We know the integrals of the secant and cosecant functions: \[ \int \sec^2 x \, dx = \tan x + C_1 \] \[ \int \csc^2 x \, dx = -\cot x + C_2 \] Thus, we have: \[ \int \sec^2 x \, dx - \int \csc^2 x \, dx = \tan x - (-\cot x) + C \] This simplifies to: \[ \tan x + \cot x + C \] ### Final Answer Therefore, the final result of the integral is: \[ \int (\tan^2 x - \cot^2 x) \, dx = \tan x + \cot x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(cot^(2)x+cot^(4)x)dx=

int (tan^2x+cot^2x)dx

int(x cot^(2)x)dx

int(tan x-2cot x)^(2)dx

int(1+tan^(2)x)/(1+cot^(2)x)dx-

int(1+tan^(2)x)/(1+cot^(2)x)dx

Integrate the following functions (i) int((1+x)^(4))/(x)dx (ii) int(e^(200x)+e^(202x))/(e^(x)+e^(-x))dx (iii) int(1+tan^(2)x)/(1+cot^(2)x)dx

int(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x)dx equals

int x^(51)(tan^(-1)x+cot^(-1)x)dx=

int (tan x +cot x)^(2)dx