Home
Class 12
MATHS
int(tanx-cotx)^(2)dx=...

`int(tanx-cotx)^(2)dx=`

A

`tanx+cotx+c`

B

`tanx-cotx+c`

C

`-tanx-cotx+c`

D

`-tanx+cotx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\tan x - \cot x)^2 \, dx \), we can follow these steps: ### Step 1: Expand the integrand First, we expand the expression \( (\tan x - \cot x)^2 \): \[ (\tan x - \cot x)^2 = \tan^2 x + \cot^2 x - 2 \tan x \cot x \] ### Step 2: Substitute cotangent Recall that \( \cot x = \frac{1}{\tan x} \). Therefore, we can rewrite the expression: \[ \tan^2 x + \cot^2 x - 2 \tan x \cot x = \tan^2 x + \frac{1}{\tan^2 x} - 2 \] ### Step 3: Use trigonometric identities We can use the identity \( \tan^2 x = \sec^2 x - 1 \) and \( \cot^2 x = \csc^2 x - 1 \): \[ \tan^2 x + \cot^2 x = (\sec^2 x - 1) + (\csc^2 x - 1) = \sec^2 x + \csc^2 x - 2 \] Thus, we have: \[ \tan^2 x + \cot^2 x - 2 = \sec^2 x + \csc^2 x - 4 \] ### Step 4: Rewrite the integral Now we can rewrite the integral: \[ \int (\tan x - \cot x)^2 \, dx = \int (\sec^2 x + \csc^2 x - 4) \, dx \] ### Step 5: Separate the integrals We can separate the integral into three parts: \[ \int \sec^2 x \, dx + \int \csc^2 x \, dx - 4 \int dx \] ### Step 6: Integrate each part Now we can integrate each part: 1. \( \int \sec^2 x \, dx = \tan x + C_1 \) 2. \( \int \csc^2 x \, dx = -\cot x + C_2 \) 3. \( \int dx = x + C_3 \) Putting it all together: \[ \int (\tan x - \cot x)^2 \, dx = \tan x - \cot x - 4x + C \] ### Final Answer Thus, the final result is: \[ \int (\tan x - \cot x)^2 \, dx = \tan x - \cot x - 4x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int(2tanx-3cotx)^(2)dx

int(tanx+cotx)^2dx

int(1)/(tanx+cotx)dx=

int(secx+tanx)^(2)dx=

int_(pi//3)^(pi//4)(tanx+cotx)^(2)dx

int2^(tanx)/(cos^2x)dx

int(cotx)/(1+sinx)dx=

int(1+cotx)/(1-cotx)dx=

Prove that- sin2x(tanx+cotx)=2

Evaluate int(sqrt(tanx)+sqrt(cotx))dx