Home
Class 12
MATHS
int(1+cos^(2)x)/(1-cos2x)dx=...

`int(1+cos^(2)x)/(1-cos2x)dx=`

A

`-cotx-(x)/(2)+c`

B

`cotx+(x)/(2)+c`

C

`cotx-(x)/(2)+c`

D

`-cotx+(x)/(2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \cos^2 x}{1 - \cos 2x} \, dx \), we will follow these steps: ### Step 1: Rewrite the denominator We know that \( \cos 2x = 1 - 2\sin^2 x \). Therefore, we can rewrite the denominator: \[ 1 - \cos 2x = 1 - (1 - 2\sin^2 x) = 2\sin^2 x \] ### Step 2: Substitute the denominator into the integral Now, substituting this into the integral, we have: \[ \int \frac{1 + \cos^2 x}{2 \sin^2 x} \, dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ \int \frac{1}{2 \sin^2 x} \, dx + \int \frac{\cos^2 x}{2 \sin^2 x} \, dx \] This simplifies to: \[ \frac{1}{2} \int \csc^2 x \, dx + \frac{1}{2} \int \cot^2 x \, dx \] ### Step 4: Integrate the first part The integral of \( \csc^2 x \) is: \[ \int \csc^2 x \, dx = -\cot x \] Thus, \[ \frac{1}{2} \int \csc^2 x \, dx = -\frac{1}{2} \cot x \] ### Step 5: Integrate the second part The integral of \( \cot^2 x \) can be rewritten using the identity \( \cot^2 x = \csc^2 x - 1 \): \[ \int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx = -\cot x - x \] Thus, \[ \frac{1}{2} \int \cot^2 x \, dx = \frac{1}{2} (-\cot x - x) = -\frac{1}{2} \cot x - \frac{1}{2} x \] ### Step 6: Combine the results Now, combining both parts, we have: \[ -\frac{1}{2} \cot x - \frac{1}{2} \cot x - \frac{1}{2} x = -\cot x - \frac{1}{2} x \] ### Step 7: Add the constant of integration Finally, we add the constant of integration \( C \): \[ -\cot x - \frac{1}{2} x + C \] Thus, the final answer is: \[ \int \frac{1 + \cos^2 x}{1 - \cos 2x} \, dx = -\cot x - \frac{1}{2} x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(1+cos^(2)x)/(1+cos 2x)dx

int(1+cos 2x)/(1-cos 2x)dx

int(1+cos^(2)(x))/(1+cos(2x))dx

Evaluate the following integrals : int(1-cos2x)/(1+cos2x)dx

Evaluate the following integrals: (i) int((1-cos2x)/(1+cos2x))dx (ii) int((1+cos2x)/(1-cos2x))dx

int(x)/(1+cos2x)dx

int(cos x-cos2x)/(1-cos x)*dx

int(cos x)/(1-cos^(2)x)dx

int(cos x)/(1-cos^(2)x)dx

Evaluate: int(cos x-cos2x)/(1-cos x)dx