Home
Class 12
MATHS
int(sin^(m)x)/(cos^(m+2)x)dx=...

`int(sin^(m)x)/(cos^(m+2)x)dx=`

A

`(tan^(m+1))/(m+1)+c`

B

`(tan^(m)x)/(m)+c`

C

`tan^(m)x+c`

D

`(m)/(m+1)log(tanx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin^m x}{\cos^{m+2} x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{\sin^m x}{\cos^{m+2} x} \, dx = \int \frac{\sin^m x}{\cos^m x \cdot \cos^2 x} \, dx \] ### Step 2: Use Trigonometric Identities Using the identity \( \tan x = \frac{\sin x}{\cos x} \), we can express the integral as: \[ \int \tan^m x \cdot \frac{1}{\cos^2 x} \, dx \] Since \( \frac{1}{\cos^2 x} = \sec^2 x \), we can rewrite the integral as: \[ \int \tan^m x \cdot \sec^2 x \, dx \] ### Step 3: Substitution Now we can use the substitution \( t = \tan x \). The derivative of \( \tan x \) is \( \sec^2 x \), which gives us \( dt = \sec^2 x \, dx \). Thus, we can rewrite the integral in terms of \( t \): \[ \int t^m \, dt \] ### Step 4: Integrate Now we can integrate using the power rule: \[ \int t^m \, dt = \frac{t^{m+1}}{m+1} + C \] ### Step 5: Back Substitute Finally, we substitute back \( t = \tan x \): \[ \frac{\tan^{m+1} x}{m+1} + C \] ### Final Answer Thus, the solution to the integral is: \[ \int \frac{\sin^m x}{\cos^{m+2} x} \, dx = \frac{\tan^{m+1} x}{m+1} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Derive reduction formula for l_((n","m))=int (sin^(n)x)/(cos^(m)x)dx .

int(sin x)/(cos^(2)x)dx

int(sin x)/(cos^(2)x)dx

Find the following integrals: ( i ) int(sin x+cos x)dx( ii) int cos ecx(cos ecx+cos x)dx( iii) int(1-sin x)/(cos^(2)x)dx

int(sin^(3)(x)/(2)+cos^(3)(x)/(2))/(sin(x)/(2)+cos(x)/(2))dx

int(cos x)/(sin^(2)x)dx

int(cos x)/(sin^(2)x)dx

int(1-sin2x)/(cos x-sin x)dx=

Evaluate : (i) int(cos2x+2sin^(2)x)/(sin^(2)x)dx (ii) int(2cos^(2)x-cos2x)/(cos^(2)x)dx

int(1+sin2x)/(cos x+sin x)dx