Home
Class 12
MATHS
int(x^(3)[tan^(-1)(x^(4))]^(2))/(1+x^(8)...

`int(x^(3)[tan^(-1)(x^(4))]^(2))/(1+x^(8))dx=`

A

`([tan^(-1)(x^(4))]^(2))/(12)+c`

B

`(tan^(-1)x)/(4)+c`

C

`([tan^(-1)(x^(4))]^(3))/(4)+c`

D

`([tan^(-1)(x^(4))]^(3))/(12)+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))dx=

int x^(3)(tan^(-1)x)dx

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int(x tan^(-1)x^(2))/(1+x^(4))dx

int(tan^(-1)x)/(x^(2))*dx

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

int_(0)^(1)tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

int_(0)^(x)tan^(-1)(1-x+x^(2))dx

int(1)/(x^(2))tan^(2)((1)/(x))dx

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=