Home
Class 12
MATHS
int(tanx)/(log(cosx))dx=...

`int(tanx)/(log(cosx))dx=`

A

`-log(cosx)+c`

B

`log[log(cosx)]+c`

C

`-log[log(cosx)]+c`

D

`log[log(secx)]+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=

int(tanx)/(1+cosx)dx=

int(cosx)/((1+cosx))dx=?

inte^(x)[tanx-log(cosx)]dx=

int(1+tanx)/(e^(-x)cosx)dx is equal to

int(tanx)/(secx+tanx)dx=

int(dx)/(cosx(1-cosx))=

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)