Home
Class 12
MATHS
int(1+cotx)/(1-cotx)dx=...

`int(1+cotx)/(1-cotx)dx=`

A

`log(sinx)-log(1-cotx)+c`

B

`log(sinx)+log(1-cotx)+c`

C

`log(cotx-1)+c`

D

`log(1+cotx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1 + \cot x}{1 - \cot x} \, dx\), we can follow these steps: ### Step 1: Rewrite the integrand We start with the integral: \[ \int \frac{1 + \cot x}{1 - \cot x} \, dx \] Recall that \(\cot x = \frac{\cos x}{\sin x}\). Thus, we can rewrite the integrand: \[ \frac{1 + \cot x}{1 - \cot x} = \frac{1 + \frac{\cos x}{\sin x}}{1 - \frac{\cos x}{\sin x}} = \frac{\sin x + \cos x}{\sin x - \cos x} \] ### Step 2: Substitute and simplify Now, we can rewrite the integral: \[ \int \frac{\sin x + \cos x}{\sin x - \cos x} \, dx \] ### Step 3: Use substitution Let \(u = \sin x - \cos x\). Then, we differentiate \(u\): \[ du = (\cos x + \sin x) \, dx \] This means: \[ dx = \frac{du}{\cos x + \sin x} \] ### Step 4: Substitute back into the integral Now we can substitute \(u\) and \(dx\) into the integral: \[ \int \frac{\sin x + \cos x}{u} \cdot \frac{du}{\cos x + \sin x} = \int \frac{1}{u} \, du \] ### Step 5: Integrate The integral of \(\frac{1}{u}\) is: \[ \ln |u| + C = \ln |\sin x - \cos x| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1 + \cot x}{1 - \cot x} \, dx = \ln |\sin x - \cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

(1)/(1-cotx)

int(cotx)/(cosecx-cotx)dx=

int(dx)/((1-cotx))=?

inte^x(cotx-1-cot^2 x)dx=

int(cotx)/(1+sinx)dx=

intdx/(1+cotx)

int(cotx)/(log(sinx))dx

(d)/(dx)((1+cotx)/(1-cotx))

int(cotx)/(sqrt(sinx))dx=

If : int(1+cos4x)/(cotx-tanx)dx=A.cos 4x+B , then