Home
Class 12
MATHS
int(1)/(sqrt(sec^(2)x+tan^(2)x))dx=...

`int(1)/(sqrt(sec^(2)x+tan^(2)x))dx=`

A

`-tan^(-1)(cosx)+c`

B

`log(cosx+sqrt(1+cos^(2)x))+c`

C

`log(sinx-sqrt(1+sin^(2)x))+c`

D

`log(sinx+sqrt(1+sin^(2)x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{\sec^2 x + \tan^2 x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the expression inside the square root We know that: \[ \sec^2 x = 1 + \tan^2 x \] Thus, we can rewrite the integral as: \[ \int \frac{1}{\sqrt{\sec^2 x + \tan^2 x}} \, dx = \int \frac{1}{\sqrt{(1 + \tan^2 x) + \tan^2 x}} \, dx = \int \frac{1}{\sqrt{1 + 2\tan^2 x}} \, dx \] ### Step 2: Use trigonometric identities We can express \(\tan^2 x\) in terms of \(\sin x\) and \(\cos x\): \[ \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \] Substituting this back into the integral gives: \[ \int \frac{1}{\sqrt{1 + 2\frac{\sin^2 x}{\cos^2 x}}} \, dx = \int \frac{1}{\sqrt{\frac{\cos^2 x + 2\sin^2 x}{\cos^2 x}}} \, dx \] This simplifies to: \[ \int \frac{\cos x}{\sqrt{\cos^2 x + 2\sin^2 x}} \, dx \] ### Step 3: Substitute \( t = \sin x \) Let \( t = \sin x \), then \( dt = \cos x \, dx \). The integral becomes: \[ \int \frac{1}{\sqrt{1 + 2t^2}} \, dt \] ### Step 4: Solve the integral The integral \( \int \frac{1}{\sqrt{1 + 2t^2}} \, dt \) is a standard form. The result is: \[ \frac{1}{\sqrt{2}} \ln \left| t + \sqrt{1 + 2t^2} \right| + C \] ### Step 5: Substitute back for \( t \) Substituting back \( t = \sin x \): \[ \frac{1}{\sqrt{2}} \ln \left| \sin x + \sqrt{1 + 2\sin^2 x} \right| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{\sqrt{\sec^2 x + \tan^2 x}} \, dx = \frac{1}{\sqrt{2}} \ln \left| \sin x + \sqrt{1 + 2\sin^2 x} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sec^(2)x+2tan^(2)x)dx

int(dx)/(sec^(2)x tan^(2)x)=

int(sec^(2)x)/(1-tan^(2)x)dx

int(sec^(2)x)/(tan^(2)x+4)dx

int(sec^(2)x)/(tan^(2)x+4)dx

int(sec^(2)x)/(tan^(2)x+4)dx

int(sec^(2)x)/(tan^(2)x+4)dx

int(sec^(2)x)/(9-tan^(2)x)dx

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/(tan x)dx