Home
Class 12
MATHS
int(1)/(x^(2)-x^(3))dx=...

`int(1)/(x^(2)-x^(3))dx=`

A

`log((1-x)/(x))-(1)/(x)+`

B

`log((1-x)/(x))+(1)/(x)+c`

C

`log((x)/(1+x))+c`

D

`-log((1-x)/(x))-(1)/(x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x^2 - x^3} \, dx \), we can follow these steps: ### Step 1: Simplify the Denominator First, we can factor the denominator: \[ x^2 - x^3 = x^2(1 - x) \] Thus, the integral becomes: \[ \int \frac{1}{x^2(1 - x)} \, dx \] ### Step 2: Rewrite the Integral We can rewrite the integral as: \[ \int \frac{1}{x^2} \cdot \frac{1}{1 - x} \, dx \] ### Step 3: Use Substitution Let’s use the substitution \( t = \frac{1}{x} - 1 \). Then, we have: \[ \frac{1}{x} = t + 1 \implies x = \frac{1}{t + 1} \] Now we differentiate \( x \): \[ dx = -\frac{1}{(t + 1)^2} dt \] ### Step 4: Substitute in the Integral Now we substitute \( x \) and \( dx \) into the integral: \[ \int \frac{1}{\left(\frac{1}{t + 1}\right)^2} \cdot \frac{1}{1 - \frac{1}{t + 1}} \left(-\frac{1}{(t + 1)^2}\right) dt \] This simplifies to: \[ \int \frac{(t + 1)^2}{1 - \frac{1}{t + 1}} \left(-\frac{1}{(t + 1)^2}\right) dt \] ### Step 5: Simplify Further The term \( 1 - \frac{1}{t + 1} \) simplifies to \( \frac{t}{t + 1} \). So now we have: \[ -\int \frac{1}{\frac{t}{t + 1}} dt = -\int \frac{t + 1}{t} dt \] ### Step 6: Break Down the Integral This can be split into two integrals: \[ -\int \left(1 + \frac{1}{t}\right) dt = -\left(t + \log |t|\right) + C \] ### Step 7: Substitute Back Now we substitute back for \( t \): \[ t = \frac{1}{x} - 1 \implies -\left(\frac{1}{x} - 1 + \log \left|\frac{1}{x} - 1\right|\right) + C \] ### Step 8: Final Simplification This leads us to: \[ \log \left| \frac{1}{x} - 1 \right| + 1 + C \] Thus, the final answer is: \[ -\log \left| \frac{1 - x}{x} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int1/(x^(2)-x^(3))dx=

int(1)/(x+x^(2)+x^(3))dx

int(1)/(x^(2)-2x-3)dx=

int(x-1)/(x^(2)-2x-3)dx

int(1)/(x(2x-3)^(2))dx=

int(1)/(2x^(2)+5x+3)dx

int(1)/(1+x+x^(2)+x^(3))dx=

Evaluate: int(1)/(1+x+x^(2)+x^(3))dx

int(1)/(x^(1/2)+x^(1/3))dx

Evaluate: int(1)/(x^(1/2)+x^(1/3))dx