Home
Class 12
MATHS
int(1)/(x^(3)-x^(4))dx=...

`int(1)/(x^(3)-x^(4))dx=`

A

`log((x)/(1-x))+(2x+1)/(2x^(2))+c`

B

`log((1-x)/(x))-(2x+1)/(2x^(2))+c`

C

`log((x)/(1-x))-(2x+1)/(2x^(2))+c`

D

`(x^(-1))/(-1)-(x^(-2))/(-2)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x^(3)+x^(4))dx1,334

int(1)/(2x^(2)+3x-4)dx

int(x^(3))/(x^(4)+1)dx

int(x+3)/((x+1)^(4))dx

int(x+3)/((x+1)^(4))dx

int(2x^(3)-1)/(x^(4)+x)dx is equal to

" If "1=int(x^(3)-x)/(x^(4)-9)dx" ,then "1" is equal to "

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to: (Here C is a constant of integration)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

int(1)/(x^(2)(x^(4)+1)^((3)/(4)))dx