Home
Class 12
MATHS
int(1)/(e^(x)(1+e^(-x)))dx=...

`int(1)/(e^(x)(1+e^(-x)))dx=`

A

`log(1+e^(-x))+c`

B

`log(e^(-x)-1)+c`

C

`log((e^(x))/(1+e^(x)))+c`

D

`x+log(1+e^(x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{e^x(1 + e^{-x})} \, dx, \] we can start by simplifying the integrand. ### Step 1: Rewrite the integrand We can rewrite the integrand as follows: \[ \frac{1}{e^x(1 + e^{-x})} = \frac{e^{-x}}{1 + e^{-x}}. \] ### Step 2: Substitution Let’s make the substitution: \[ t = 1 + e^{-x}. \] Now, we need to find \( dt \): \[ dt = -e^{-x} \, dx \quad \Rightarrow \quad dx = -\frac{dt}{e^{-x}}. \] Since \( e^{-x} = t - 1 \), we can rewrite \( dx \): \[ dx = -\frac{dt}{t - 1}. \] ### Step 3: Substitute in the integral Now substitute \( e^{-x} \) and \( dx \) into the integral: \[ \int \frac{e^{-x}}{1 + e^{-x}} \, dx = \int \frac{(t - 1)}{t} \left(-\frac{dt}{t - 1}\right). \] This simplifies to: \[ -\int \frac{1}{t} \, dt. \] ### Step 4: Integrate The integral of \( -\frac{1}{t} \) is: \[ -\log |t| + C. \] ### Step 5: Substitute back Now we substitute back \( t = 1 + e^{-x} \): \[ -\log |1 + e^{-x}| + C. \] ### Final Answer Thus, the final answer is: \[ -\log(1 + e^{-x}) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1)/((e^(x)-1)(1-e^(-x)))dx

" 19."int(1)/((e^(x)-1)(e^(x)+3))dx

int(1)/(e^(-x)) dx

int_(-1)^(1)(e^(x)-e^(-x))dx=

int (dx)/((1+e^x)(1+e^(-x)))=

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

Solve int_(-1)^(1)(e^(x)-e^(-x))dx

int_(0)^(1)(e^(-x))/(1+e^(-x))dx

int_(0)^(1) (1)/(e^(x) +e^(-x)) dx