Home
Class 12
MATHS
int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=...

`int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=`

A

`e^(x)-e^(-x)-2 tan^(-1)(e^(x))+c`

B

`e^(-x)+e^(x)+2 tan^(-1)(e^(-x))+c`

C

`e^(-x)-e^(x)+2tan^(-1)(e^(x))+c`

D

`e^(x)-e^(-x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{e^{2x} + e^{-2x}}{e^{x} + e^{-x}} \, dx, \] we will follow a series of steps. ### Step 1: Rewrite the integral We can rewrite the terms with negative exponents in reciprocal form: \[ I = \int \frac{e^{2x} + \frac{1}{e^{2x}}}{e^{x} + \frac{1}{e^{x}}} \, dx. \] ### Step 2: Simplify the expression Now, we can multiply the numerator and the denominator by \(e^{2x}\): \[ I = \int \frac{e^{4x} + 1}{e^{3x} + e^{x}} \, dx. \] ### Step 3: Factor the denominator The denominator can be factored as follows: \[ e^{3x} + e^{x} = e^{x}(e^{2x} + 1). \] Thus, we can rewrite the integral: \[ I = \int \frac{e^{4x} + 1}{e^{x}(e^{2x} + 1)} \, dx. \] ### Step 4: Split the integral Now, we can split the integral: \[ I = \int \frac{e^{4x}}{e^{x}(e^{2x} + 1)} \, dx + \int \frac{1}{e^{x}(e^{2x} + 1)} \, dx. \] This simplifies to: \[ I = \int \frac{e^{3x}}{e^{2x} + 1} \, dx + \int \frac{e^{-x}}{e^{2x} + 1} \, dx. \] ### Step 5: Substitution Let \(t = e^{x}\). Then, \(dt = e^{x} \, dx\) or \(dx = \frac{dt}{t}\). The limits change accordingly, but since this is an indefinite integral, we will not worry about limits. Substituting \(t\) into the integral gives: \[ I = \int \frac{t^3}{t^2 + 1} \cdot \frac{dt}{t} + \int \frac{1}{t(t^2 + 1)} \, dt. \] This simplifies to: \[ I = \int \frac{t^2}{t^2 + 1} \, dt + \int \frac{1}{t(t^2 + 1)} \, dt. \] ### Step 6: Solve the integrals 1. For the first integral: \[ \int \frac{t^2}{t^2 + 1} \, dt = \int \left(1 - \frac{1}{t^2 + 1}\right) dt = t - \tan^{-1}(t) + C_1. \] 2. For the second integral: \[ \int \frac{1}{t(t^2 + 1)} \, dt. \] Using partial fractions: \[ \frac{1}{t(t^2 + 1)} = \frac{A}{t} + \frac{Bt + C}{t^2 + 1}. \] Solving for \(A\), \(B\), and \(C\) gives: \[ \int \left(\frac{1}{t} - \frac{t}{t^2 + 1} + \frac{1}{t^2 + 1}\right) dt = \ln|t| - \frac{1}{2} \ln|t^2 + 1| + \tan^{-1}(t) + C_2. \] ### Step 7: Combine results Combining both integrals: \[ I = \left(t - \tan^{-1}(t) + C_1\right) + \left(\ln|t| - \frac{1}{2} \ln|t^2 + 1| + \tan^{-1}(t) + C_2\right). \] ### Step 8: Substitute back Substituting back \(t = e^{x}\): \[ I = e^{x} + \ln|e^{x}| - \frac{1}{2} \ln|e^{2x} + 1| + C. \] ### Final Result Thus, the final result is: \[ I = e^{x} + x - \frac{1}{2} \ln(e^{2x} + 1) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int (e^(2x) +e^(-2x))/(e^(x)) dx

int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A log|(e^(x)+e^(-x)+a)/(e^(x)+e^(-x)-a)|+c then (A,a) =

int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx is equal to

int ((e ^(2x) + e ^(-2x)))/( e^(x)) dx =

int((e^(x)+e^(-x))^(2))/((e^(x)-e^(-x))^(2))dx=

int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx

int((e^(2x))/(e^(2x)-1))dx=

Evaluate: int(e^(2x)-2e^(x))/(e^(2x)+1)dx

int(e^(-4x)+e^(-2x)+1)/(e^-x)dx

int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx=A x+Blog(9e^(2x)-4)+C ,t h e n A=_________ _, B=_________, C=___________