Home
Class 12
MATHS
int(1)/((e^(-mx))^(2))dx=...

`int(1)/((e^(-mx))^(2))dx=`

A

`(1)/(1+e^(2mx))+c`

B

`(-1)/(2m(1+e^(2mx))+c`

C

`(1)/(m(1+e^(2mx)))+c`

D

`(2m)/(e^(2mx)+e^(-2mx))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(dx)/((e^(x)-1)^(2))

int(1)/((e^(x)+e^(-x))^(2))dx

int(1)/(3e^(x)+2e^(-x))dx=

Evaluate: int(e^(x))/((1+e^(x))^(2))dx

int((e^(2x))/(e^(2x)-1))dx=

int(e^(2x))/(1+e^(2x))dx=

int(1)/(x^(2)e^(a//x))dx=

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

Given int_(1)^(2) e^(x^(2))dx=a , the value of int_(e )^(e^(4)) sqrt(log_(e )x)dx , is

int1/((e^(2x)+e^(-2x))^(2))dx=