Home
Class 12
MATHS
If I(n)=int x^(n)e^(x)dx, then I(5)+5I(4...

If `I_(n)=int x^(n)e^(x)dx,` then `I_(5)+5I_(4)=`

A

`4x^(4)e^(x)+c`

B

`5x^(4)e^(x)+c`

C

`x^(5)e^(x)+c`

D

`3I_(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( I_5 + 5I_4 \) where \( I_n = \int x^n e^x \, dx \). ### Step-by-Step Solution: 1. **Define the Integrals:** \[ I_5 = \int x^5 e^x \, dx \] \[ I_4 = \int x^4 e^x \, dx \] 2. **Write the Expression:** We need to find: \[ I_5 + 5I_4 = \int x^5 e^x \, dx + 5 \int x^4 e^x \, dx \] 3. **Combine the Integrals:** We can combine the two integrals: \[ I_5 + 5I_4 = \int x^5 e^x \, dx + \int 5x^4 e^x \, dx = \int (x^5 + 5x^4) e^x \, dx \] 4. **Factor the Expression:** Notice that \( x^5 + 5x^4 = x^4(x + 5) \): \[ I_5 + 5I_4 = \int x^4 (x + 5) e^x \, dx \] 5. **Apply Integration by Parts:** We can use integration by parts. Let: - \( u = x^4 \) (then \( du = 4x^3 \, dx \)) - \( dv = (x + 5)e^x \, dx \) (then \( v = e^x (x + 5 - 5) = e^x (x + 5) - 5e^x \)) Thus, we can write: \[ \int u \, dv = uv - \int v \, du \] 6. **Calculate \( uv \):** \[ uv = x^4 e^x (x + 5) - \int e^x (x + 5) \cdot 4x^3 \, dx \] 7. **Final Expression:** After performing the integration by parts and simplifying, we find: \[ I_5 + 5I_4 = e^x (x^5 + 5x^4) - 4I_4 \] 8. **Substituting Back:** We can substitute back \( I_4 \) to express everything in terms of \( I_4 \) and \( e^x \). ### Final Result: Thus, we conclude that: \[ I_5 + 5I_4 = e^x (x^5 + 5x^4) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int(sinnx)/(sinx)dx, then I_(5)-I_(3)=

If I_(n)=int(sinnx)/(cosx)dx, then I_(7)+I_(5)=

If I_(n)=int(ln x)^(n)dx then I_(n)+nI_(n-1)

If I_(n)=int cot^(n) x dx , then I_(0)+I_(1)+2(I_(2)+I_(3)+...+I_(8))+I_(9)+I_(10) equals to (where u=cot x )

If I_(n)=int_(0)^(pi/4)tan^(n)xdx then I_(2)+I_(4), I_(3)+I_(5), I_(4)+I_(6) ...... are in

" 2.If "I=int(x^(2)+e^(2)x)dx," then "I=

If I_(n)=int(sin x)^(n)dx,n in N, then 5I_(4)-6I_(6) is equal to

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If I_(n)=int_(0)^(1)(1-x^(5))^(n)dx, then (55)/(7)quad (I_(10))/(I_(11)) is equal to