Home
Class 12
MATHS
If I(n)=int cos^(n)xdx, then (n+1)I(n+1)...

If `I_(n)=int cos^(n)xdx,` then `(n+1)I_(n+1)-nI_(n-1)=`

A

`sinx`

B

`sinx cos^(n)x`

C

`sinxcos^(n-1)x`

D

`sinxcos^(n-2)x`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

I_(n)=int sin^(n)xdx

If I_(n)=int(ln x)^(n)dx then I_(n)+nI_(n-1)

If I_(n)=int sin^(n)x backslash dx, then nI_(n)-(n-1)I_(n-2) equals

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If I_(n)=int cos^(n)xdx, then I_(7)-(cos^(6)x sin x)/(7)=

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If l_(n)=intcos^(n)xdx, prove that l_(n)=(1)/(n)(cos^(n-1)xsinx)+((n-1)/(n))l_(n-2) .

If I_(n)=int x^(n)cos axdx and I_(n)=int x^(n)sin axdx then show that.(1)aI_(n)=x^(n)sin ax-nI_(n-1)

if I_(m,n)=int(x^(m))/((log x)^(n))dx, then (m+1)I_(m,n)-nI_(m,n+1) is