Home
Class 12
MATHS
int(1)/(x(1+logx)^(3))+c...

`int(1)/(x(1+logx)^(3))+c`

A

`(1)/(2(1+logx)^(2))+c`

B

`(1)/(1+logx)+c`

C

`(-1)/(3(1+logx)^(3))+c`

D

`(-1)/(3(1+logx)^(3))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x(1 + \log x)^3} \, dx \), we will use the substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let: \[ y = 1 + \log x \] Then, differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{x} \implies dy = \frac{1}{x} \, dx \] This means: \[ dx = x \, dy \] Since \( x = e^{y-1} \) (from \( y = 1 + \log x \)), we can substitute \( x \) in terms of \( y \). ### Step 2: Rewrite the Integral Substituting \( y \) and \( dx \) into the integral, we have: \[ \int \frac{1}{x(1 + \log x)^3} \, dx = \int \frac{1}{x y^3} \cdot x \, dy = \int \frac{1}{y^3} \, dy \] ### Step 3: Integrate Now we can integrate \( \frac{1}{y^3} \): \[ \int \frac{1}{y^3} \, dy = \int y^{-3} \, dy = \frac{y^{-2}}{-2} + C = -\frac{1}{2y^2} + C \] ### Step 4: Substitute Back Now, substitute back \( y = 1 + \log x \): \[ -\frac{1}{2(1 + \log x)^2} + C \] ### Final Answer Thus, the final result of the integral is: \[ -\frac{1}{2(1 + \log x)^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

(1)/(x(3+logx))

int1/(x(1-logx)^(2))dx=

int(dx)/(x(1+(logx)^(2))) equals

int(1)/(x(logx))dx=?

int(dx)/(x(3+logx))=

Evlauate : int (1)/(x[6(logx)^(2)+7logx+2]] dx= log |(1+log x^(2))/(2+log x^(3))|+c

Evaluate int(logx)/((1+logx)^(2))dx .

int_(1)^(x) (logx^(2))/x dx is equal to

Evaluate the following integrals: int(logx)/((1+logx)^(2))dx