Home
Class 12
MATHS
int(e^(x)(1+xlogx))/(x)dx=...

`int(e^(x)(1+xlogx))/(x)dx=`

A

`(e^(x)logx)/(x)+c`

B

`e^(x)(1+logx)+c`

C

`e^(x)logx+c`

D

`xe^(x)logx+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

inte^(x)((1+xlogx)/(x))dx=?

Evaluate the following integrals: inte^(x)((1+xlogx)/(x))dx

Evaluate: int(e^x(1+xlogx))/xdx

int_(1)^(e)e^(x)((1+xlogx)/(x))dx

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx

int(log(logx))/(x.logx)dx=

int e^(x)(1+x)dx

int(e^((1)/(x)))/(x^(3))dx

int(e^(x)-1)/(e^(x)+1)dx