Home
Class 12
MATHS
int(x-1)/((x+1)^(3))e^(x)dx=...

`int(x-1)/((x+1)^(3))e^(x)dx=`

A

`(-e^(x))/((x+1)^(2))+c`

B

`(e^(x))/(x+1)+c`

C

`(-e^(x))/((x+1)^(2))+c`

D

`(e^(x))/(x-1)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x-1}{(x+1)^3} e^x \, dx, \] we can utilize the property of integration involving the product of an exponential function and the derivative of a function. ### Step 1: Rewrite the integrand We start by rewriting the integrand to facilitate the use of the integration property. We can express \(x - 1\) as follows: \[ x - 1 = (x + 1) - 2. \] So, we can rewrite the integral as: \[ \int \frac{(x + 1) - 2}{(x + 1)^3} e^x \, dx = \int \left( \frac{x + 1}{(x + 1)^3} - \frac{2}{(x + 1)^3} \right) e^x \, dx. \] ### Step 2: Separate the integrals Now we can separate the integral into two parts: \[ \int \frac{1}{(x + 1)^2} e^x \, dx - 2 \int \frac{1}{(x + 1)^3} e^x \, dx. \] ### Step 3: Apply integration by parts For the first integral, we can use the integration property mentioned in the transcript. Let: \[ f(x) = \frac{1}{x + 1} \implies f'(x) = -\frac{1}{(x + 1)^2}. \] Thus, we can express the first integral as: \[ \int e^x f'(x) \, dx = e^x f(x) + C = e^x \cdot \frac{1}{x + 1} + C. \] ### Step 4: Solve the second integral For the second integral, we can similarly use the property. Let: \[ g(x) = \frac{1}{(x + 1)^2} \implies g'(x) = -\frac{2}{(x + 1)^3}. \] Thus, we can express the second integral as: \[ \int e^x g'(x) \, dx = e^x g(x) + C = e^x \cdot \frac{1}{(x + 1)^2} + C. \] ### Step 5: Combine the results Now we can combine the results of both integrals: \[ \int \frac{x - 1}{(x + 1)^3} e^x \, dx = e^x \cdot \frac{1}{x + 1} - 2 \left( e^x \cdot \frac{1}{(x + 1)^2} \right) + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{x - 1}{(x + 1)^3} e^x \, dx = e^x \left( \frac{1}{x + 1} - \frac{2}{(x + 1)^2} \right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(x-3)/((x-1)^(3)).e^(x)dx is equal to

int e^(x)(x-1)/((x+1)^(3))dx

int_(1)^(3)e^(-x)dx

If inte^(x)(x-1)/((x+1)^(3))dx=(e^(x))/((g(x))^(a))+c , then

int((x-1)e^(x))/((x+1)^(3))dx

Evaluate: int e^(x)(x-1)/((x+1)^(3))dx

int_(-1)^(1)(e^(x)-e^(-x))dx=

Evaluate: int((x-1)e^(x))/((x+1)^(3))dx

int((x-1).e^(x))/((x+1)^(3))dx=

int(1)/(e^(x)(1+e^(-x)))dx=