Home
Class 12
MATHS
int(e^(-x))/(1+e^(x))dx=...

`int(e^(-x))/(1+e^(x))dx=`

A

`e^(x)log(1+e^(x))+c`

B

`e^(-x)+log(1+e^(x))+c`

C

`-e^(-x)+log(1+e^(-x))+c`

D

`e^(-x)-log(1+e^(-x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{e^{-x}}{1 + e^{x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ \int \frac{e^{-x}}{1 + e^{x}} \, dx = \int \frac{1}{e^{x}(1 + e^{x})} \, dx \] ### Step 2: Split the Fraction Next, we can manipulate the integrand by adding and subtracting \( e^{x} \): \[ \int \left( \frac{1 + e^{x}}{e^{x}(1 + e^{x})} - \frac{e^{x}}{e^{x}(1 + e^{x})} \right) \, dx \] This simplifies to: \[ \int \left( \frac{1}{e^{x}} - \frac{1}{1 + e^{x}} \right) \, dx \] ### Step 3: Separate the Integrals Now we can separate the integral into two parts: \[ \int \frac{1}{e^{x}} \, dx - \int \frac{1}{1 + e^{x}} \, dx \] ### Step 4: Integrate the First Part The first integral can be computed as follows: \[ \int \frac{1}{e^{x}} \, dx = \int e^{-x} \, dx = -e^{-x} + C_1 \] ### Step 5: Integrate the Second Part For the second integral, we can use a substitution. Let: \[ t = e^{-x} + 1 \quad \Rightarrow \quad dt = -e^{-x} \, dx \quad \Rightarrow \quad dx = -\frac{dt}{t - 1} \] Then, we have: \[ \int \frac{1}{1 + e^{x}} \, dx = \int \frac{1}{t} \left(-\frac{dt}{t - 1}\right) \] This integral simplifies to: \[ -\int \frac{1}{t} \, dt = -\ln|t| + C_2 \] ### Step 6: Combine the Results Combining both parts, we have: \[ -e^{-x} - \ln|e^{-x} + 1| + C \] ### Step 7: Final Simplification We can write the final answer as: \[ -e^{-x} + \ln|1 + e^{-x}| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{e^{-x}}{1 + e^{x}} \, dx = -e^{-x} + \ln(1 + e^{-x}) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(3e^(x))/(1-e^(x))dx

int(e^(2x))/(1+e^(x))dx

int(e^(2x))/(1+e^(2x))dx=

int(e^(3x)-1)/(e^(x))dx

int(e^(2x)+1)/(e^(x))dx

Evaluate: int(e^(2x))/(1+e^(x))dx

Evaluate: int(e^(x))/(1+e^(2x))dx

Evaluate: (i) int xe^(x)^^2dx (ii) int(e^(2x))/(1+e^(x))dx

int(e^(x)-1)/(e^(x)+1)dx

int(e^(x)-1)/(e^(x)+1)dx