Home
Class 12
MATHS
int(log(x//e))/((logx)^(2))dx=...

`int(log(x//e))/((logx)^(2))dx=`

A

`(x+1)/((logx)^(2))+c`

B

`(x-1)/((logx)^(2))+c`

C

`(x)/(logx)+c`

D

`(logx)/(x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\log\left(\frac{x}{e}\right)}{(\log x)^2} \, dx \), we can follow these steps: ### Step 1: Simplify the logarithmic expression Using the property of logarithms, we can rewrite \( \log\left(\frac{x}{e}\right) \) as: \[ \log\left(\frac{x}{e}\right) = \log x - \log e \] Since \( \log e = 1 \), we have: \[ \log\left(\frac{x}{e}\right) = \log x - 1 \] Thus, we can rewrite the integral as: \[ \int \frac{\log x - 1}{(\log x)^2} \, dx \] ### Step 2: Split the integral We can split the integral into two parts: \[ \int \frac{\log x}{(\log x)^2} \, dx - \int \frac{1}{(\log x)^2} \, dx \] This simplifies to: \[ \int \frac{1}{\log x} \, dx - \int \frac{1}{(\log x)^2} \, dx \] ### Step 3: Substitution for the first integral Let \( u = \log x \). Then, \( du = \frac{1}{x} \, dx \) or \( dx = e^u \, du \). The first integral becomes: \[ \int \frac{1}{u} e^u \, du \] ### Step 4: Integration by parts for the first integral Using integration by parts, let: - \( v = e^u \) and \( dv = e^u \, du \) - \( w = \frac{1}{u} \) and \( dw = -\frac{1}{u^2} \, du \) Then, the integration by parts formula \( \int v \, dw = vw - \int w \, dv \) gives us: \[ \int \frac{1}{u} e^u \, du = \frac{e^u}{u} - \int e^u \left(-\frac{1}{u^2}\right) \, du \] This simplifies to: \[ \frac{e^u}{u} + \int \frac{e^u}{u^2} \, du \] ### Step 5: Substitute back to \( x \) Now, substituting back \( u = \log x \): \[ \int \frac{1}{\log x} e^{\log x} \, dx = \frac{x}{\log x} + \int \frac{x}{(\log x)^2} \, dx \] ### Step 6: Combine the results Now, we have: \[ \int \frac{\log x - 1}{(\log x)^2} \, dx = \left( \frac{x}{\log x} + \int \frac{x}{(\log x)^2} \, dx \right) - \int \frac{1}{(\log x)^2} \, dx \] ### Final Result Thus, the final result of the integral is: \[ \int \frac{\log\left(\frac{x}{e}\right)}{(\log x)^2} \, dx = \frac{x}{\log x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

int (log x)/(1+logx)^2 dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

int_(1)^(e)((logx)^(2))/(x)dx=?

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

Evaluate :int_(e)^(e^(2)){(1)/(log x)-(1)/((log x)^(2))}dx