Home
Class 12
MATHS
If intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^...

If `intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^(2)+c,` then `f(x)` can be

A

1

B

x

C

`cosx`

D

`sinx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If intf(x)sec^(2)xdx=(1)/(2)[f(x)]^(2)+c, then : f(x) can be

If intf(x)dx=2[f(x)]^(3)+c , then f(x) can be

If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equal to

If intf (x)sinx cosx dx=(1)/(2(a^(2)-b^(2)))log|f(x)|+C ,then f (x)=

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If int f(x) sinx cosx dx=(1)/(2(b^(2)-a^(2))) "In " f(x)+c," then " f(x) is equal to

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=