Home
Class 12
MATHS
int(u(v(du)/(dx)-u(dv)/(dx)))/(v^(3))dx=...

`int(u(v(du)/(dx)-u(dv)/(dx)))/(v^(3))dx=`

A

`log((u)/(v))+c`

B

`(u^(2)v^(2))/(2)+c`

C

`(u^(2))/(2v^(2))+c`

D

`(u)/(2v)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

The function u=e^(x)sin x,v=e^(x)cos x satisfy the equation (a) v(du)/(dx)-u(du)/(dx)=u^(2)+v^(2)(b)(d^(2)u)/(dx^(2))=2v(c)d^(2)v())/(dx^(2))=-2u(d)(du)/(dx)+(dv)/(dx)=2v

If u,v and w are functions of x ,then show that (d)/(dx)(u*v*w)=(du)/(dx)v*w+u*(dv)/(dx)*w+u*v(dw)/(dx) in two ways - first by repeated application of product rule,second by logarithmic differentiation.

(v) int((6x+5)/(x))dx

int(1)/(sqrt(u))du

int((1+v)/(1-v))dv

Let u(x) and v(x) satisfy the differential equation (du)/(dx)+p(x)u=f(x) and (dv)/(dx)+p(x)v=g(x) are continuous functions.If u(x_(1)) for some x_(1) and f(x)>g(x) for all x>x_(1), does not satisfy point (x,y), where x>x_(1), does not satisfy the equations y=u(x) and y=v(x) .

If f is a continuous function on [a;b] and u(x) and v(x) are differentiable functions of x whose values lie in [a;b] then (d)/(dx){int_(u(x))^(v)(x)f(t)dt}=f(v(x))dv(x)/(dx)-f(u(x))du(x)/(dx)

If y =f(u) is differentiable function of u, and u=g(x) is a differentiable function of x, then prove that y= f [g(x)] is a differentiable function of x and (dy)/(dx)=(dy)/(du)xx(du)/(dx) .

u=sin(m cos^(-1)x),v=cos(m sin^(-1)x), provethat (du)/(dv)=sqrt((1-u^(2))/(1-v^(2)))

Let u=int_(0)^((pi)/(4))(cos^(2)x)/(1+sin2x)dx,v=int_(0)^((pi)/(8))(1)/((1+tan2x)^(2))dx then the value of (u)/(v) equals