Home
Class 12
MATHS
If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec...

If `f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0,` then `f(1)=`

A

`1-(pi)/(4)`

B

`(pi)/(4)-1`

C

`(tan1)-(pi)/(4)`

D

`(pi)/(4)+tan1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given by: \[ f(x) = \int \frac{x^2 + \sin^2 x}{1 + x^2} \sec^2 x \, dx \] with the condition that \( f(0) = 0 \) and we need to find \( f(1) \). ### Step 1: Rewrite the integral We start by rewriting the integrand: \[ f(x) = \int \left( \frac{x^2}{1 + x^2} + \frac{\sin^2 x}{1 + x^2} \right) \sec^2 x \, dx \] ### Step 2: Split the integral We can split the integral into two parts: \[ f(x) = \int \frac{x^2}{1 + x^2} \sec^2 x \, dx + \int \frac{\sin^2 x}{1 + x^2} \sec^2 x \, dx \] ### Step 3: Simplify the first integral The first integral can be simplified as follows: \[ \int \frac{x^2}{1 + x^2} \sec^2 x \, dx = \int \left( 1 - \frac{1}{1 + x^2} \right) \sec^2 x \, dx \] This gives us: \[ \int \sec^2 x \, dx - \int \frac{\sec^2 x}{1 + x^2} \, dx \] ### Step 4: Evaluate the first integral The integral of \( \sec^2 x \) is: \[ \int \sec^2 x \, dx = \tan x \] Thus, we have: \[ \int \frac{x^2}{1 + x^2} \sec^2 x \, dx = \tan x - \int \frac{\sec^2 x}{1 + x^2} \, dx \] ### Step 5: Simplify the second integral Now, we need to evaluate the second integral: \[ \int \frac{\sin^2 x}{1 + x^2} \sec^2 x \, dx = \int \frac{\sin^2 x}{1 + x^2} \cdot \frac{1}{\cos^2 x} \, dx = \int \frac{\sin^2 x}{\cos^2 x (1 + x^2)} \, dx \] ### Step 6: Combine the results Combining the results, we have: \[ f(x) = \tan x - \int \frac{\sec^2 x}{1 + x^2} \, dx + \int \frac{\sin^2 x}{\cos^2 x (1 + x^2)} \, dx \] ### Step 7: Evaluate \( f(0) \) We know that \( f(0) = 0 \). Substituting \( x = 0 \): \[ f(0) = \tan(0) - \int \frac{\sec^2(0)}{1 + 0^2} \, dx + \int \frac{\sin^2(0)}{\cos^2(0)(1 + 0^2)} \, dx = 0 \] This implies that the constant of integration \( C = 0 \). ### Step 8: Evaluate \( f(1) \) Now, we need to find \( f(1) \): \[ f(1) = \tan(1) - \int \frac{\sec^2(1)}{1 + 1^2} \, dx + \int \frac{\sin^2(1)}{\cos^2(1)(1 + 1^2)} \, dx \] Calculating this gives us: \[ f(1) = \tan(1) - \frac{1}{2} \sec^2(1) + \frac{\sin^2(1)}{2 \cos^2(1)} \] ### Final Result Thus, the final value of \( f(1) \) is: \[ f(1) = \tan(1) - \frac{1}{2} + \frac{\sin^2(1)}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sex^(2)xdx and f(0)=0then f(1)=

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

Let f(x),=int(x^(2))/((1+x^(2))(1+sqrt(1+x^(2))))dx and f(0),=0 then f(1) is

If f(x)=int(3x^(2)+1)/((x^(2)-1)^(3))dx and f(0)=0, then the value of (2)/(f(2))| is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)+int{f(x)}^(-2)dx=0 and f(1)=0 then f(x) is

If F(x)=int((1+sin x)/(1+cos x))dx and F(0)=0 then the value of F(pi/2) is

If F(x)=int(x+sin x)/(1+cos x)dx and F(0)=0 then the value of f((pi)/(2)) is

If f''(x) = sec^(2) x and f (0) = f '(0) = 0 then:

A function y=f(x) satisfies f''(x)=-(1)/(x^(2))-pi^(2)sin(pi x)f'(2)=pi+(1)/(2) and f(1)=0 then value of f((1)/(2)) is