Home
Class 12
MATHS
int(vdu-udv)/(u^(2)+v^(2))=...

`int(vdu-udv)/(u^(2)+v^(2))=`

A

`log(u+sqrt(u^(2)+sqrt(u^(2)+v^(2))))+c`

B

`log(v-sqrt(u^(2)+v^(2)))+c`

C

`tan^(-1)((u)/(v))+c`

D

`log(u+v-sqrt(u^(2)+v^(2)))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(udu+vdv)/(u^(2)+v^(2))=

The function u=e^(x)sin x,v=e^(x)cos x satisfy the equation (a) v(du)/(dx)-u(du)/(dx)=u^(2)+v^(2)(b)(d^(2)u)/(dx^(2))=2v(c)d^(2)v())/(dx^(2))=-2u(d)(du)/(dx)+(dv)/(dx)=2v

int(u(v(du)/(dx)-u(dv)/(dx)))/(v^(3))dx=

int (du) / (u sqrt (u ^ (2) -1))

"int(tan^(-1)u)/((1+u)^(2))du

int e ^ (- (v) / (u)) dv

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

The square root of the complex number z= (u^(2))/(v^(2))+(v^(2))/(u^(2))+(1)/(2i)((u)/(v)+(v)/(u))+(31)/(16) is (in terms of u, v, w )

The square root of the complex number z =(u^(2))/(v^(2))+(v^(2))/(u^(2))+(1)/(2i)((u)/(v)+(v)/(u))+(31)/(16) is