Home
Class 12
MATHS
int(1+tan^(2)x)/(1+cot^(2)x)dx-...

`int(1+tan^(2)x)/(1+cot^(2)x)dx-`

A

`sinx-cos x+c`

B

`secx-cos x+c`

C

`tanx-cotx+c`

D

`tanx-x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \tan^2 x}{1 + \cot^2 x} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We know from trigonometric identities that: - \( 1 + \tan^2 x = \sec^2 x \) - \( 1 + \cot^2 x = \csc^2 x \) Thus, we can rewrite the integral as: \[ \int \frac{\sec^2 x}{\csc^2 x} \, dx \] ### Step 2: Rewrite in terms of sine and cosine Using the definitions of secant and cosecant: \[ \sec^2 x = \frac{1}{\cos^2 x} \quad \text{and} \quad \csc^2 x = \frac{1}{\sin^2 x} \] So, we have: \[ \frac{\sec^2 x}{\csc^2 x} = \frac{\frac{1}{\cos^2 x}}{\frac{1}{\sin^2 x}} = \frac{\sin^2 x}{\cos^2 x} \] This simplifies to: \[ \tan^2 x \] ### Step 3: Set up the new integral Now, our integral becomes: \[ \int \tan^2 x \, dx \] ### Step 4: Use the identity for tangent squared Recall the identity: \[ \tan^2 x = \sec^2 x - 1 \] Thus, we can rewrite the integral as: \[ \int (\sec^2 x - 1) \, dx \] ### Step 5: Separate the integral Now we can separate the integral: \[ \int \sec^2 x \, dx - \int 1 \, dx \] ### Step 6: Integrate each part The integral of \( \sec^2 x \) is: \[ \tan x \] And the integral of \( 1 \) is: \[ x \] Thus, we have: \[ \tan x - x + C \] ### Final Answer The final result of the integral is: \[ \int \frac{1 + \tan^2 x}{1 + \cot^2 x} \, dx = \tan x - x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

int(dx)/(1+cot^(2)x)

int(tan^(2)x-cot^(2)x)dx=

int(1+tan^2x)/(1-tan^2x)dx=

int tan^(-1)((2x)/(1-x^(2)))dx

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int_(0)^( pi/2)(1)/(1+cot^(2)x)dx=?

Evaluate: int tan^(-1)((2x)/(1-x^(2)))dx

int(x tan^(-1)x^(2))/(1+x^(4))dx