Home
Class 12
MATHS
If intf(x)sec^(2)xdx=(1)/(2)[f(x)]^(2)+c...

If `intf(x)sec^(2)xdx=(1)/(2)[f(x)]^(2)+c,` then : `f(x)` can be

A

`cos^(5)x`

B

`tanx+c`

C

`cotx`

D

`tanx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^(2)+c, then f(x) can be

If intf(x)dx=2[f(x)]^(3)+c , then f(x) can be

If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

If int f(x)cos xdx=(1)/(2)f^(2)(x)+C" ,then "f(x)" can be "P sin x .Find the value of "P

If int f(x)cos xdx=(1)/(2)f^(2)(x)+C then the value of 4f(x) at x=0 is

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equal to