Home
Class 12
MATHS
int9^(log(3)(secx))dx=...

`int9^(log_(3)(secx))dx=`

A

`secx+tanx+c`

B

`cotx+c`

C

`tanx+c`

D

`-tanx+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int3^(-log_(9)x^(2))dx

int(log x)^(3/2)/(x)dx

int3^(-2log_(9)x)dx=

" 1) int_(0)^(1)5^(log_(3)x)dx =

int(log x)^(3)x^(4)dx

int_(0)^(1)log(3+x)dx

int log_(e)xdx=int(1)/(log_(x)e)dx=

int(log sqrt(x))/(3x)dx

int((secx)/(secx-tanx))dx equals

int(log(3x))/(x log(9x))dx= (a) log(3x)-log(9x)+c (b) log(x)-(log3)*log(log9x)+c (c) log9-(log x)*log(log3x)+c (d) log(x)+(log3)*log(log(9x))+c