Home
Class 12
MATHS
If I(n)=int(logx)^(n)dx for all n epsilo...

If `I_(n)=int(logx)^(n)dx` for all `n epsilon N, I_(n)+nI_(n-1)=`

A

`(logx)^(n)+x`

B

`(logx)^(n-1)`

C

`((logx)^(n))/(x)`

D

`x(logx)^(n)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int((logx)^n)/(x)dx=

I_(n)=int sin^(n)xdx

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If I_(n)=int(x^(n)dx)/(sqrt(x^(2)+a)) then prove that I_(n)+(n-1)/(n)al_(n-2)=(1)/(n)x^(n-1)*sqrt(x^(2)+a)

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

I_(n)=int_(1)^(e)(log)^(n)dx and I_(n)=A+BI_(n+1) then A&B=