Home
Class 12
MATHS
If int(1)/(f(x))dx=log[f(x)]^(2)+c, then...

If `int(1)/(f(x))dx=log[f(x)]^(2)+c`, then `f(x)=`

A

`x+a`

B

`2x+a`

C

`(x)/(2)+a`

D

`x^(2)+a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ \int \frac{1}{f(x)} \, dx = \log[f(x)]^2 + c \] We need to find the function \( f(x) \). ### Step 1: Differentiate both sides To find \( f(x) \), we will differentiate both sides with respect to \( x \). Using the Fundamental Theorem of Calculus on the left side, we have: \[ \frac{1}{f(x)} = \frac{d}{dx} \left( \log[f(x)]^2 + c \right) \] ### Step 2: Apply the chain rule on the right side Using the chain rule, the derivative of \( \log[f(x)]^2 \) is: \[ \frac{d}{dx} \left( \log[f(x)]^2 \right) = \frac{2 \cdot f'(x)}{f(x)} \] Thus, we can rewrite the equation as: \[ \frac{1}{f(x)} = \frac{2 f'(x)}{f(x)} \] ### Step 3: Simplify the equation Since \( f(x) \) is present in both sides, we can multiply both sides by \( f(x) \): \[ 1 = 2 f'(x) \] ### Step 4: Solve for \( f'(x) \) From the equation above, we can isolate \( f'(x) \): \[ f'(x) = \frac{1}{2} \] ### Step 5: Integrate to find \( f(x) \) Now, we integrate \( f'(x) \): \[ f(x) = \int \frac{1}{2} \, dx = \frac{1}{2} x + C \] ### Step 6: Write the final form of \( f(x) \) Thus, we can express \( f(x) \) as: \[ f(x) = \frac{1}{2} x + C \] Where \( C \) is a constant of integration. ### Conclusion The function \( f(x) \) that satisfies the original equation is: \[ f(x) = \frac{1}{2} x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

if int(dx)/(f(x))=log(f(x))^(2)+C then

if int(dx)/(f(x))=log(f(x))^(2)+C then

int(f'(x))/(f(x))dx=log f(x)+c

If int(dx)/(f(x)) = log {f(x)}^(2) + c , then what is f(x) equal to ?

If int(dx)/(f(x))=log{f(x)}^(2)+c , then what is f(x) equal to ?

If int(1)/(sin(x-a)cos(x-a))dx=log[f(x)]+c , then f(x)=

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

int(f'(x))/(f(x)log{f(x)})dx=

If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=