Home
Class 12
MATHS
int((x-x^(3))^(1//3))/(x^(4))dx=...

`int((x-x^(3))^(1//3))/(x^(4))dx=`

A

`(3)/(8)((1)/(x^(2))-1)^(4//3)+c`

B

`-(3)/(8)((1)/(x^(2))-1)^(4//3)+c`

C

`(1)/(8)(1-(1)/(x^(2)))^(4//3)+c`

D

`-(1)/(8)((1)/(x^(3))-x)^(4//3)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{(x - x^3)^{1/3}}{x^4} \, dx \), we can follow these steps: ### Step 1: Simplify the expression inside the integral First, we can factor out \( x^3 \) from the expression \( x - x^3 \): \[ x - x^3 = x(1 - x^2) \] Thus, we can rewrite the integral as: \[ \int \frac{(x(1 - x^2))^{1/3}}{x^4} \, dx \] ### Step 2: Rewrite the integral Now, we can simplify the integral: \[ \int \frac{x^{1/3}(1 - x^2)^{1/3}}{x^4} \, dx = \int \frac{(1 - x^2)^{1/3}}{x^{4 - 1/3}} \, dx = \int \frac{(1 - x^2)^{1/3}}{x^{11/3}} \, dx \] ### Step 3: Use substitution Let \( t = 1 - x^2 \). Then, differentiate \( t \) to find \( dt \): \[ dt = -2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{-2x} \] Now, we also need to express \( x \) in terms of \( t \): \[ x^2 = 1 - t \quad \Rightarrow \quad x = \sqrt{1 - t} \] Substituting these into the integral gives: \[ \int \frac{t^{1/3}}{(\sqrt{1 - t})^{11/3}} \cdot \frac{dt}{-2\sqrt{1 - t}} = -\frac{1}{2} \int \frac{t^{1/3}}{(1 - t)^{6/3}} \, dt \] ### Step 4: Simplify the integral This simplifies to: \[ -\frac{1}{2} \int t^{1/3} (1 - t)^{-2} \, dt \] ### Step 5: Use the Beta function or integration by parts This integral can be solved using the Beta function or integration techniques. We can express it in terms of the Beta function: \[ \int t^{1/3} (1 - t)^{-2} \, dt = B\left(\frac{4}{3}, 1\right) \] ### Step 6: Evaluate the integral The integral evaluates to: \[ -\frac{1}{2} \cdot \frac{\Gamma\left(\frac{4}{3}\right) \Gamma(1)}{\Gamma\left(\frac{4}{3} + 1\right)} \] ### Step 7: Substitute back for \( t \) Finally, we substitute back \( t = 1 - x^2 \) into our result to get the final answer. ### Final Answer The integral evaluates to: \[ -\frac{3}{8} (1 - x^2)^{4/3} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx is

Evaluate the following integral: int_(1//3)^1((x-x^3)^(1//3))/(x^4)dx

int(x^(3))/(x^(4)+1)dx

Evaluate int_(1/3)^1 (x-x^3)^(1/3)/x^4dx

int((1+x)^(3))/(x^(4))dx

int(x^(1/3))/((1+x^(4/3))^(3))dx

(i) int ((1+x)^(3))/(sqrt(x))dx " "(ii) int((1+x)^(3))/(x^(4)) dx

int((x^(3)-1)dx)/(x^(4))

int (x^(1/3))/((1+x^(4/3))^(9))dx

int (x^(1/3))/((1+x^(4/3))^(9))dx