Home
Class 12
MATHS
If f(x)=int(2sinx-sin2x)/(x^(3))dx, then...

If `f(x)=int(2sinx-sin2x)/(x^(3))dx,` then : `lim_(xrarr0) f'(x)=`

A

0

B

`oo`

C

`-1`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int((2sin x-sin2x)/(x^(3))dx);x!=0 then lim_(x rarr0)f'(x) is: (A) 0(B)oo(C)-1 (D) 1

lim_(xrarr0) (sin 3x)/x

If f(x) = int(sinx-sin2x)/(x^(3)) dx, where xne0 , then Limit_(xto0) f^(')(x) has the value

f(x) is the integral of (2sin x-sin2x)/(x^(3)),x!=0. Find lim_(x rarr0)f'(x)[wheref'(x)=(df)/(dx)]

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

lim_(xrarr0) (sinx)/(x)= ?

Evaluate lim_(xrarr0) f(x) , where

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by