Home
Class 12
MATHS
int(1)/(cosx sqrt(cos2x))dx=...

`int(1)/(cosx sqrt(cos2x))dx=`

A

`sqrt2[sqrt(tanx)+(1)/(5)tan^(5//2)x]+c`

B

`sqrt2[sqrt(cotx)+(1)/(5)tan^(5//2)x]+c`

C

`sqrt2[sqrt(tanx)-(1)/(5)tan^(5//2)x]+c`

D

`sin^(-1)(tanx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\cos x \sqrt{\cos 2x}} \, dx \), we will follow these steps: ### Step 1: Rewrite \(\cos 2x\) We know that: \[ \cos 2x = \cos^2 x - \sin^2 x \] We can also express \(\cos 2x\) in terms of \(\cos^2 x\): \[ \cos 2x = 2\cos^2 x - 1 \] Thus, we can write: \[ \sqrt{\cos 2x} = \sqrt{2\cos^2 x - 1} \] ### Step 2: Substitute \(\sqrt{\cos 2x}\) Now, we can substitute this back into the integral: \[ I = \int \frac{1}{\cos x \sqrt{2\cos^2 x - 1}} \, dx \] ### Step 3: Use the identity for \(\tan x\) To simplify the integral, we will use the substitution: \[ \tan x = t \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \] Also, we have: \[ \cos x = \frac{1}{\sqrt{1 + t^2}} \] ### Step 4: Substitute into the integral Now substituting \(\tan x\) and \(dx\) into the integral: \[ I = \int \frac{1}{\frac{1}{\sqrt{1 + t^2}} \sqrt{2\left(\frac{1}{1 + t^2}\right)^2 - 1}} \cdot \frac{dt}{1 + t^2} \] This simplifies to: \[ I = \int \frac{\sqrt{1 + t^2}}{\sqrt{2 - (1 + t^2)}} \cdot \frac{dt}{1 + t^2} \] ### Step 5: Simplify the expression The term under the square root simplifies to: \[ \sqrt{1 + t^2} \cdot \sqrt{1 - \frac{1}{2}(1 + t^2)} = \sqrt{1 + t^2} \cdot \sqrt{\frac{1}{2}(1 - t^2)} \] Thus, we can write: \[ I = \int \frac{dt}{\sqrt{1 - t^2}} \] ### Step 6: Recognize the standard integral The integral \(\int \frac{dt}{\sqrt{1 - t^2}}\) is a standard integral that evaluates to: \[ \sin^{-1}(t) + C \] ### Step 7: Substitute back for \(t\) Since \(t = \tan x\), we have: \[ I = \sin^{-1}(\tan x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{\cos x \sqrt{\cos 2x}} \, dx = \sin^{-1}(\tan x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(cos x sqrt(cos2x))

int(cosx)/(sqrt(cos2x))dx=

Evaluate: int(1)/(sqrt(1+cos2x))dx

int(1)/(cosx.sqrt(sinx.cosx))dx=

int(secx)/(sqrt(cos2x))dx=

int(sinx)/(sqrt(cos2x))dx=

int(1)/(sinx+sqrt3cosx)dx=

int(dx)/(sqrt(1+cos2x))

Evaluate: (i) int(1)/(sqrt(1+cos2x))dx (ii) int(1)/(sqrt(1-cos x))dx

Evaluate: (i) int(1)/(sqrt(1-cos2x))dx (ii) int(1)/(sqrt(1+cos x))dx