Home
Class 12
MATHS
Integral of (1)/(sqrt(x^(2)+4)) w.r.t. (...

Integral of `(1)/(sqrt(x^(2)+4))` w.r.t. `(x^(2)+3)` is

A

`sqrt(x^(2)+4)+c`

B

`(1)/(sqrt(x^(2)+4))+c`

C

`2sqrt(x^(2)+4)+c`

D

`3sqrt(x^(2)+3)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{x^2 + 4}} \, d(x^2 + 3) \), we will follow these steps: ### Step 1: Rewrite the Integral We know that the differential \( d(x^2 + 3) \) can be expressed in terms of \( dx \): \[ d(x^2 + 3) = 2x \, dx \] Thus, we can rewrite the integral as: \[ \int \frac{1}{\sqrt{x^2 + 4}} \, d(x^2 + 3) = \int \frac{1}{\sqrt{x^2 + 4}} \cdot 2x \, dx \] ### Step 2: Substitute for Simplicity Next, we will use a substitution to simplify the integral. Let: \[ t = x^2 + 4 \] Then, the differential \( dt \) is: \[ dt = 2x \, dx \] Now we can substitute \( t \) into our integral: \[ \int \frac{2x \, dx}{\sqrt{x^2 + 4}} = \int \frac{dt}{\sqrt{t}} \] ### Step 3: Integrate The integral of \( \frac{1}{\sqrt{t}} \) is: \[ \int t^{-1/2} \, dt = 2t^{1/2} + C \] Thus, we have: \[ \int \frac{dt}{\sqrt{t}} = 2\sqrt{t} + C \] ### Step 4: Substitute Back Now we substitute back for \( t \): \[ t = x^2 + 4 \] So, we have: \[ 2\sqrt{t} = 2\sqrt{x^2 + 4} \] ### Final Answer Putting everything together, the final result of the integral is: \[ \int \frac{1}{\sqrt{x^2 + 4}} \, d(x^2 + 3) = 2\sqrt{x^2 + 4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

The differential coefficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is

The differential cofficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is-

Integral of sqrt(1+2cotx(cot x + cosec x)) w.r.t. x, is

Find derivative of sqrt(3x+2)+(1)/(sqrt(2x^(2)+4)) w.r.t.to x

What is the rate of change of sqrt(x^(2)+16) w.r.t. x^(2) at x=3 ?

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differeniate cot^(-1)(sqrt(1+x^(2))+x) w.r.t. x.

Darivative of tan ^(-1) ((x)/( sqrt(1-x^(2)))) w.r.t. sin ^(-1) (3x -4x^(3)) is

Find the d.c.of sqrt(sin(1+x^(2))^(2)) w.r.t.1+x^(2)