Home
Class 12
MATHS
int(f(x)g'(x)+g(x)f'(x))/(f(x)g(x))[logf...

`int(f(x)g'(x)+g(x)f'(x))/(f(x)g(x))[logf(x)+logg(x)]dx=`

A

`f(x)g(x)log[f(x)g(x)]+c`

B

`(1)/(2){log[f(x)g(x)]}^(2)+c`

C

`{log[f(x)g(x)]}^(2)+c`

D

`log[f(x)g(x)]+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

int(f(x)*g\'(x)-f\'(x)g(x))/(f(x)*g(x))*{logg(x)-logf(x)}dx= (A) log (g(x)/f(x))+c (B) log (f(x)/g(x))+c (C) 1/2log (g(x)/f(x))^2+c (D) none of these

int_( is )((f(x)g'(x)-f'(x)g(x))/(f(x)g(x)))*(log(g(x))-log(f(x))dx

int(f'(x))/(f(x).logf(x))dx=

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

int{f(x)g'(x)-f'g(x)}dx equals

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

Evaluate: int[f(x)g'(x)-f'(x)g(x)]dx

If f(x) and g(f) are two differentiable functions and g(x)!=0, then show trht (f(x))/(g(x)) is also differentiable (d)/(dx){(f(x))/(g(x))}=(g(x)(d)/(pi){f(x)}-g(x)(d)/(x){g(x)})/([g(x)]^(2))

int[f(x).phi'(x)-f'(x).phi(x)]/[f(x).phi(x)]{logphi(x)-logf(x)}.dx is equal to